Structural determinants for activation and block of CFTR-mediated chloride currents by apigenin.

نویسندگان

  • B Illek
  • M E Lizarzaburu
  • V Lee
  • M H Nantz
  • M J Kurth
  • H Fischer
چکیده

Apigenin (4',5,7-trihydroxyflavone) is an activator of cystic fibrosis transmembrane conductance regulator (CFTR)-mediated Cl(-) currents across epithelia at low concentrations and a blocker at high concentrations. We determined the roles of structural components of apigenin for both stimulation and block of Cl(-) currents across Calu-3 epithelia. The half-maximal binding affinity of apigenin for current stimulation (K(s)) was 9.1 +/- 1.3 microM, and the rank-order of molecular structures was 7-hydroxyl > pyrone = 4'-hydroxyl > 5-hydroxyl. Both the 7-hydroxyl and the 4'-hydroxyl served as H-bond acceptors, whereas the 5-hydroxyl was an H-bond donor. The half-maximal binding affinity of apigenin during current block was 74 +/- 11 microM. Blocked Cl(-) currents were structurally determined by 7-hydroxyl = 4'-hydroxyl > pyrone > 5-hydroxyl. Prestimulation of tissues with forskolin significantly affected activation kinetics and binding characteristics. After forskolin stimulation, K(s) was 4.1 +/- 0.9 microM, which was structurally determined by pyrone > all hydroxyls > single hydroxyls. In contrast, block of Cl(-) current by apigenin was not affected by forskolin stimulation. We conclude that apigenin binds to a stimulatory and an inhibitory binding site, which are distinguished by their affinities and the molecular interactions during binding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1

Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...

متن کامل

The cystic fibrosis transmembrane conductance regulator (CFTR) inhibits ENaC through an increase in the intracellular Cl- concentration.

Activation of the CFTR Cl- channel inhibits epithelial Na+ channels (ENaC), according to studies on epithelial cells and overexpressing recombinant cells. Here we demonstrate that ENaC is inhibited during stimulation of the cystic fibrosis transmembrance conductance regulator (CFTR) in Xenopus oocytes, independent of the experimental set-up and the magnitude of the whole-cell current. Inhibitio...

متن کامل

Anion interactions with CFTR and consequences for HCO3- transport in secretory epithelia.

We have been studying CFTR channels in guinea pig pancreatic duct cells and rather surprisingly found that luminal HCO3- had a pronounced inhibitory effect on cAMP-activated CFTR chloride currents. The block produced by HCO3- was rapid, voltage-independent and occurred over a physiological range of extracellular HCO3- concentrations. I- and ClO4- were also found to inhibit CFTR currents, but bo...

متن کامل

SLC26A9 is a constitutively active, CFTR-regulated anion conductance in human bronchial epithelia

Human bronchial epithelial (HBE) cells exhibit constitutive anion secretion that is absent in cells from cystic fibrosis (CF) patients. The identity of this conductance is unknown, but SLC26A9, a member of the SLC26 family of CF transmembrane conductance regulator (CFTR)-interacting transporters, is found in the human airway and exhibits chloride channel behavior. We sought differences in the p...

متن کامل

The block of CFTR by scorpion venom is state-dependent.

Cystic fibrosis transmembrane conductance regulator (CFTR) adenosine triphosphate-dependent chloride channels are expressed in epithelial cells and are associated with a number of genetic disorders, including cystic fibrosis. Venom of the scorpion Leirus quinquestriatus hebraeus reversibly inhibits CFTR when applied to its cytoplasmic surface. To examine the state-dependence of inhibition we re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 279 6  شماره 

صفحات  -

تاریخ انتشار 2000